References

  1. Wang Z, Deurenberg P, Wang W, Pietrobelli A, Baumgartner R, Heymsfield SB. Hydration of fat-free body mass: New physiological modeling approach. Am J Physiol Endocrinol Metab. 1999;276(6):E995-E1003. doi:10.1152/ajpendo.1999.276.6.e995
  2. Cole TJ. The development of growth references and growth charts. Ann Hum Biol. 2012;39(5):382-394. doi:10.3109/03014460.2012.694475
  3. Zemel BS, Pipan M, Stallings VA, et al. Growth charts for children with down syndrome in the United States. Pediatrics. 2015;136(5):e1204-e1211. doi:10.1542/peds.2015-1652
  4. Barlow SE. Expert committee recommendations regarding the prevention, assessment, and treatment of child and adolescent overweight and obesity: summary report. Pediatrics. 2007;120 Suppl 4. doi:10.1542/peds.2007-2329C
  5. Grummer-Strawn LM, Reinold C, Krebs NF. Use of World Health Organization and CDC growth charts for children Aged 0-59 months in the United States. Morb Mortal Wkly Rep. 2009;59(RR-9). https://www.cdc.gov/mmwr/preview/mmwrhtml/rr5909a1.htm
  6. Kelly AS, Barlow SE, Rao G, et al. Severe obesity in children and adolescents: Identification, associated health risks, and treatment approaches: A scientific statement from the American Heart Association. Circulation. 2013;128(15):1689-1712. doi:10.1161/CIR.0b013e3182a5cfb3
  7. Ellis KJ, Abrams SA, Wong WW. Body composition reference data for a young multiethnic female population. Appl Radiat Isot. 49(5-6):587-588. doi:10.1016/s0969-8043(97)00077-8
  8. Toro-Ramos T, Paley C, Pi-Sunyer FX, Gallagher D. Body composition during fetal development and infancy through the age of 5 years. Eur J Clin Nutr. 2015;69(12):1279-1289. doi:10.1038/ejcn.2015.117
  9. Harrington TA, Thomas EL, Frost G, Modi N, Bell JD. Distribution of adipose tissue in the newborn. Pediatr Res. 2004;55(3):437-441. doi:10.1203/01.PDR.0000111202.29433.2D
  10. Fomon SJ, Haschke F, Ziegler EE, Nelson SE. Body composition of reference children from birth to age 10 years. Am J Clin Nutr. 1982;35(5 Suppl.):1169-1175. doi:10.1093/ajcn/35.5.1169
  11. Ogden CL, Li Y, Freedman DS, Borrud LG, Flegal KM. Smoothed percentage body fat percentiles for U.S. children and adolescents, 1999-2004. Natl Health Stat Report. 2011;(43). https://www.cdc.gov/nchs/data/nhsr/nhsr043.pdf
  12. Borrud LG, Flegal KM, Looker AC, Everhart JE, Harris TB, Shepherd JA. Body composition data for individuals 8 years of age and older: U.S. population, 1999-2004. National Center for Health Statistics. Vital Heal Stat. 2010;11(250). https://www.cdc.gov/nchs/data/series/sr_11/sr11_250.pdf
  13. Hughes AR, Sherriff A, Lawlor DA, Ness AR, Reilly JJ. Timing of excess weight gain in the Avon Longitudinal Study of Parents and Children (ALSPAC). Pediatrics. 2011;127(3). doi:10.1542/peds.2010-0959
  14. Emmett PM, Jones LR. Diet, growth, and obesity development throughout childhood in the Avon Longitudinal Study of Parents and Children. Nutr Rev. 2015;73 Suppl 3:175-206. doi:10.1093/nutrit/nuv054
  15. Williams SM, Goulding A. Patterns of growth associated with the timing of adiposity rebound. Obesity. 2009;17(2):335-341. doi:10.1038/oby.2008.547
  16. Kang MJ. The adiposity rebound in the 21st century children: Meaning for what? Korean J Pediatr. 2018;61(12):375-380. doi:10.3345/kjp.2018.07227
  17. Bandini LG, Must A, Naumova EN, et al. Change in leptin, body composition and other hormones around menarche—a visual representation. Acta Paediatr. 2008;97(10):1454-1459. doi:10.1111/j.1651-2227.2008.00948.x
  18. Kaplowitz PB. Link between body fat and the timing of puberty. Pediatrics. 2008;121 Suppl 3:S208-17. doi:10.1542/peds.2007-1813F
  19. Bonat S, Pathomvanich A, Keil RF, Field AE, Yanovski JA. Self-assessment of pubertal stage in overweight children. Pediatrics. 2002;110(4):743-747. doi:10.1542/peds.110.4.743
  20. Li W, Liu Q, Deng X, Chen Y, Liu S, Story M. Association between obesity and puberty timing: a systematic review and meta-analysis. Int J Environ Res Public Health. 2017;14(10). doi:10.3390/ijerph14101266
  21. Reinehr T, Roth CL. Is there a causal relationship between obesity and puberty? Lancet Child Adolesc Heal. 2019;3(1):44-54. doi:10.1016/S2352-4642(18)30306-7
  22. Lee JM, Wasserman R, Kaciroti N, et al. Timing of puberty in overweight versus obese boys. Pediatrics. 2016;137(2). doi:10.1542/peds.2015-0164
  23. Day FR, Elks CE, Murray A, Ong KK, Perry JRB. Puberty timing associated with diabetes, cardiovascular disease and also diverse health outcomes in men and women: the UK Biobank study. Sci Rep. 2015;5:11208. doi:10.1038/srep11208
  24. Prentice P, Viner RM. Pubertal timing and adult obesity and cardiometabolic risk in women and men: a systematic review and meta-analysis. Int J Obes (Lond). 2013;37(8):1036-1043. doi:10.1038/ijo.2012.177
  25. Caprio S, Pierpont B, Kursawe R. The “adipose tissue expandability” hypothesis: a potential mechanism for insulin resistance in obese youth. Horm Mol Biol Clin Investig. 2018;33(2). doi:10.1515/hmbci-2018-0005
  26. Umano GR, Shabanova V, Pierpont B, et al. A low visceral fat proportion, independent of total body fat mass, protects obese adolescent girls against fatty liver and glucose dysregulation: a longitudinal study. Int J Obes (Lond). 2019;43(4):673-682. doi:10.1038/s41366-018-0227-6
  27. Gyllenhammer LE, Alderete TL, Toledo-Corral CM, Weigensberg M, Goran MI. Saturation of subcutaneous adipose tissue expansion and accumulation of ectopic fat associated with metabolic dysfunction during late and post-pubertal growth. Int J Obes. 2016;40(4):601-606. doi:10.1038/ijo.2015.207
  28. Paley C, Hull H, Ji Y, et al. Body fat differences by self-reported race/ethnicity in healthy term newborns. Pediatr Obes. 2016;11(5):361-368. doi:10.1111/ijpo.12072
  29. Flegal KM, Ogden CL, Yanovski JA, et al. High adiposity and high body mass index-for-age in US children and adolescents overall and by race-ethnic group. Am J Clin Nutr. 2010;91(4):1020-1026. doi:10.3945/ajcn.2009.28589
  30. Andres A, Shankar K, Badger TM. Body fat mass of exclusively breastfed infants born to overweight mothers. J Acad Nutr Diet. 2012;112(7):991-995. doi:10.1016/j.jand.2012.03.031
  31. He Q, Horlick M, Thornton J, et al. Sex and race differences in fat distribution among Asian, African-American, and Caucasian prepubertal children. J Clin Endocrinol Metab. 2002;87(5):2164-2170. doi:10.1210/jcem.87.5.8452
  32. Shaw NJ, Crabtree NJ, Kibirige MS, Fordham JN. Ethnic and gender differences in body fat in British schoolchildren as measured by DXA. Arch Dis Child. 2007;92(10):872-875. doi:10.1136/adc.2007.117911
  33. Kelly TL, Wilson KE, Heymsfield SB. Dual energy X-ray absorptiometry body composition reference values from NHANES. PLoS One. 2009;4(9):e7038. doi:10.1371/journal.pone.0007038
  34. Navder KP, He Q, Zhang X, et al. Relationship between body mass index and adiposity in prepubertal children: Ethnic and geographic comparisons between New York City and Jinan City (China). J Appl Physiol. 2009;107(2):488-493. doi:10.1152/japplphysiol.00086.2009
  35. Hammer LD, Wilson DM, Litt IF, et al. Impact of pubertal development on body fat distribution among white, Hispanic, and Asian female adolescents. J Pediatr. 1991;118(6):975-980. doi:10.1016/s0022-3476(05)82223-1
  36. Malina RM, Huang YC, Brown KH. Subcutaneous adipose tissue distribution in adolescent girls of four ethnic groups. Int J Obes Relat Metab Disord. 1995;19(11):793-797. http://www.ncbi.nlm.nih.gov/pubmed/8589780
  37. Wang J, Thornton JC, Russell M, Burastero S, Heymsfield S, Pierson RN. Asians have lower body mass index (BMI) but higher percent body fat than do whites: comparisons of anthropometric measurements. Am J Clin Nutr. 1994;60(1):23-28. doi:10.1093/ajcn/60.1.23
  38. He Q, Horlick M, Thornton J, et al. Sex-specific fat distribution is not linear across pubertal groups in a multiethnic study. Obes Res. 2004;12(4):725-733. doi:10.1038/oby.2004.85
  39. Dioum A, Gartner A, Maire B, Delpeuch F, Wade S. Body composition predicted from skinfolds in African women: a cross-validation study using air-displacement plethysmography and a black-specific equation. Br J Nutr. 2005;93(6):973-979. doi:10.1079/bjn20051426
  40. Butte NF, Hopkinson JM, Wong WW, Smith EO, Ellis KJ. Body composition during the first 2 years of life: An updated reference. Pediatr Res. 2000;47(5):578-585. doi:10.1203/00006450-200005000-00004
  41. Boileau RA, Lohman TG, Slaughter MH, Ball TE, Going SB, Hendrix MK. Hydration of the fat-free body in children during maturation. Hum Biol. 1984;56:651-666. doi:10.2307/41463611
  42. Wells JCK, Fuller NJ, Dewit O, Fewtrell MS, Elia M, Cole TJ. Four-component model of body composition in children: Density and hydration of fat-free mass and comparison with simpler models. Am J Clin Nutr. 1999;69(5):904-912. doi:10.1093/ajcn/69.5.904
  43. Güngör NK. Overweight and obesity in children and adolescents. J Clin Res Pediatr Endocrinol. 2014;6(3):129-143. doi:10.4274/jcrpe.1471
  44. Kumar S, Kelly AS. Review of childhood obesity: from epidemiology, etiology, and comorbidities to clinical assessment and treatment. Mayo Clin Proc. 2017;92(2):251-265. doi:10.1016/j.mayocp.2016.09.017
  45. Umer A, Kelley GA, Cottrell LE, Giacobbi P, Innes KE, Lilly CL. Childhood obesity and adult cardiovascular disease risk factors: a systematic review with meta-analysis. BMC Public Health. 2017;17(1). doi:10.1186/s12889-017-4691-z
  46. Simmonds M, Llewellyn A, Owen CG, Woolacott N. Predicting adult obesity from childhood obesity: a systematic review and meta-analysis. Obes Rev. 2016;17(2):95-107. doi:10.1111/obr.12334
  47. Puhl R, Suh Y. Health consequences of weight stigma: Implications for obesity prevention and treatment. Curr Obes Rep. 2015;4(2):182-190. doi:10.1007/s13679-015-0153-z
  48. Pont S, Puhl R, Cook S, Slusser W. Stigma experienced by children and adolescents with obesity. Pediatrics. 2017;140(6):e20173034. doi:10.1542/peds.2017-3034
  49. Sopher AB, Thornton JC, Wang J, Pierson RN, Heymsfield SB, Horlick M. Measurement of percentage of body fat in 411 children and adolescents: a comparison of dual-energy X-ray absorptiometry with a four-compartment model. Pediatrics. 2004;113(5):1285-1290. doi:10.1542/peds.113.5.1285
  50. Slaughter MH, Christ CB, Stillman RJ, Boileau RA. Mineral and water content of the fat-free body: effects of gender, maturation, level of fatness, and age. Obes Res. 1993;1(1):40-49. doi:10.1002/j.1550-8528.1993.tb00006.x
  51. Lohman TG. Advances in Body Composition Assessment. Champaign, IL: Human Kinetics Publishers; 1992.
  52. Lohman TG. Applicability of body composition techniques and constants for children and youths. Exerc Sport Sci Rev. 1986;14(1):325-357. doi:10.1249/00003677-198600140-00014
  53. National Center for Health Statistics. NHANES 2017-2018 Procedure Manuals. https://wwwn.cdc.gov/nchs/nhanes/continuousnhanes/manuals.aspx?BeginYear=2017. Published 2018. Accessed November 30, 2019.
  54. Lohman TG, Roche AF MR. Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Publishers; 1988.
  55. Bell KL, Davies PSW, Boyd RN, Stevenson RD. Use of segmental lengths for the assessment of growth in children with cerebral palsy. In: Preedy VR, ed. Handbook of Anthropometry. Springer New York; 2012. doi:10.1007/978-1-4419-1788-1_78
  56. Freedman DS, Ogden CL, Berenson GS, Horlick M. Body mass index and body fatness in childhood. Curr Opin Clin Nutr Metab Care. 2005;8(6):618-623. doi:10.1097/01.mco.0000171128.21655.93
  57. Freedman DS, Ogden CL, Blanck HM, Borrud LG, Dietz WH. The abilities of body mass index and skinfold thicknesses to identify children with low or elevated levels of dual-energy X-ray absorptiometry-determined body fatness. J Pediatr. 2013;163(1). doi:10.1016/j.jpeds.2012.12.093
  58. Freedman DS, Sherry B. The validity of BMI as an indicator of body fatness and risk among children. Pediatrics. 2009;124(SUPPL. 1). doi:10.1542/peds.2008-3586E
  59. Wilkes M, Thornton J, Horlick M, et al. Relationship of BMI z score to fat percent and fat mass in multiethnic prepubertal children. Pediatr Obes. 2019;14(1). doi:10.1111/ijpo.12463
  60. Lazarus R, Baur L, Webb K, Blyth F. Body mass index in screening for adiposity in children and adolescents: systematic evaluation using receiver operating characteristic curves. Am J Clin Nutr. 1996;63(4):500-506. doi:10.1093/ajcn/63.4.500
  61. Ryder JR, Kaizer AM, Rudser KD, Daniels SR, Kelly AS. Utility of body mass index in identifying excess adiposity in youth across the obesity spectrum. J Pediatr. 2016;177:255-261.e2. doi:10.1016/j.jpeds.2016.06.059
  62. Freedman DS, Butte NF, Taveras EM, et al. BMI z-scores are a poor indicator of adiposity among 2- to 19-year-olds with very high BMIs, NHANES 1999-2000 to 2013-2014. Obesity. 2017;25(4):739-746. doi:10.1002/oby.21782
  63. Gutin B. Child obesity can be reduced with vigorous activity rather than restriction of energy intake. Obesity (Silver Spring). 2008;16(10):2193-2196. doi:10.1038/oby.2008.348
  64. Carrel AL, Clark RR, Peterson SE, Nemeth BA, Sullivan J, Allen DB. Improvement of fitness, body composition, and insulin sensitivity in overweight children in a school-based exercise program: a randomized, controlled study. Arch Pediatr Adolesc Med. 2005;159(10):963-968. doi:10.1001/archpedi.159.10.963
  65. Carrel AL, McVean JJ, Clark RR, Peterson SE, Eickhoff JC, Allen DB. School-based exercise improves fitness, body composition, insulin sensitivity, and markers of inflammation in non-obese children. J Pediatr Endocrinol Metab. 2009;22(5):409-415. doi:10.1515/JPEM.2009.22.5.409
  66. Fulton JE, Dai S, Steffen LM, Grunbaum JA, Shah SM, Labarthe DR. Physical activity, energy intake, sedentary behavior, and adiposity in youth. Am J Prev Med. 2009;37(1 Suppl):S40-9. doi:10.1016/j.amepre.2009.04.010
  67. Martínez Vizcaíno V, Salcedo Aguilar F, Franquelo Gutiérrez R, et al. Assessment of an after-school physical activity program to prevent obesity among 9- to 10-year-old children: a cluster randomized trial. Int J Obes (Lond). 2008;32(1):12-22. doi:10.1038/sj.ijo.0803738
  68. Rosenbaum M, Nonas C, Weil R, et al. School-based intervention acutely improves insulin sensitivity and decreases inflammatory markers and body fatness in junior high school students. J Clin Endocrinol Metab. 2007;92(2):504-508. doi:10.1210/jc.2006-1516
  69. Perng W, Ringham BM, Glueck DH, et al. An observational cohort study of weight- and length-derived anthropometric indicators with body composition at birth and 5 mo: The Healthy Start study. Am J Clin Nutr. 2017;106(2):559-567. doi:10.3945/ajcn.116.149617
  70. Boeke CE, Oken E, Kleinman KP, Rifas-Shiman SL, Taveras EM, Gillman MW. Correlations among adiposity measures in school-aged children. BMC Pediatr. 2013;13(1). doi:10.1186/1471-2431-13-99
  71. Heo M, Wylie-Rosett J, Pietrobelli A, Kabat GC, Rohan TE, Faith MS. US pediatric population-level associations of DXA-measured percentage of body fat with four BMI metrics with cutoffs. Int J Obes. 2014;38(1):60-68. doi:10.1038/ijo.2013.134
  72. Fryar CD, Gu Q, Ogden CL, Flegal KM. Anthropometric reference data for children and adults; United States, 2011-2014. Vital Heal Stat Ser 3. 2016;39:1-46. https://www.cdc.gov/nchs/data/series/sr_03/sr03_039.pdf
  73. Tennefors C, Forsum E. Assessment of body fatness in young children using the skinfold technique and BMI vs body water dilution. Eur J Clin Nutr. 2004;58(3):541-547. doi:10.1038/sj.ejcn.1601842
  74. Kabir N, Forsum E. Estimation of total body fat and subcutaneous adipose tissue in full-term infants less than 3 months old. Pediatr Res. 1993;34(4):448-454. doi:10.1203/00006450-199310000-00013
  75. Slaughter MH, Lohman TG, Boileau RA, et al. Skinfold equations for estimations of body fatness in children and youth. Hum Biol. 1988;60(5):709-723. https://www.ncbi.nlm.nih.gov/pubmed/3224965
  76. Freedman DS, Horlick M, Berenson GS. A comparison of the Slaughter skinfold-thickness equations and BMI in predicting body fatness and cardiovascular disease risk factor levels in children. Am J Clin Nutr. 2013;98(6):1417-1424. doi:10.3945/ajcn.113.065961
  77. Stomfai S, Ahrens W, Bammann K, et al. Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes (Lond). 2011;35 Suppl 1:S45-51. doi:10.1038/ijo.2011.34
  78. Fryar CD, Gu Q, Ogden C. Anthropometric reference data for children and adults: United States, 2007-2010. Vital Heal Stat Ser 11. 2012;252:1-48. https://www.cdc.gov/nchs/data/series/sr_11/sr11_252.pdf
  79. Wang J, Thornton JC, Bari S, et al. Comparisons of waist circumferences measured at 4 sites. Am J Clin Nutr. 2003;77(2):379-384. doi:10.1093/ajcn/77.2.379
  80. Brambilla P, Bedogni G, Moreno LA, et al. Crossvalidation of anthropometry against magnetic resonance imaging for the assessment of visceral and subcutaneous adipose tissue in children. Int J Obes (Lond). 2006;30(1):23-30. doi:10.1038/sj.ijo.0803163
  81. De Lucia Rolfe E, Modi N, Uthaya S, et al. Ultrasound estimates of visceral and subcutaneous-abdominal adipose tissues in infancy. J Obes. 2013;2013:951954. doi:10.1155/2013/951954
  82. Chumlea WC, Guo SS. Bioelectrical impedance and body composition: Present status and future directions. Nutr Rev. 1994;52(4):123-131. doi:10.1111/j.1753-4887.1994.tb01404.x
  83. Thomas BJ, Ward LC, Cornish BH. Bioimpedance spectrometry in the determination of body water compartments: accuracy and clinical significance. Appl Radiat Isot. 1998;49(5-6):447-455. doi:10.1016/s0969-8043(97)00052-3
  84. Sheng HP, Huggins RA. A review of body composition studies with emphasis on total body water and fat. Am J Clin Nutr. 1979;32(3):630-647. doi:10.1093/ajcn/32.3.630
  85. Kyle UG, Earthman CP, Pichard C, Coss-Bu JA. Body composition during growth in children: limitations and perspectives of bioelectrical impedance analysis. Eur J Clin Nutr. 2015;69(12):1298-1305. doi:10.1038/ejcn.2015.86
  86. Sun SS, Chumlea WC, Heymsfield SB, et al. Development of bioelectrical impedance analysis prediction equations for body composition with the use of a multicomponent model for use in epidemiologic surveys. Am J Clin Nutr. 2003;77(2):331-340. doi:10.1093/ajcn/77.2.331
  87. Williams J, Wake M, Campbell M. Comparing estimates of body fat in children using published bioelectrical impedance analysis equations. Int J Pediatr Obes. 2007;2(3):174-179. doi:10.1080/17477160701408783
  88. Clasey JL, Bradley KD, Bradley JW, Long DE, Griffith JR. A new BIA equation estimating the body composition of young children. Obesity. 2011;19(9):1813-1817. doi:10.1038/oby.2011.158
  89. Baumgartner RN. Electrical Impedance and Total Body Electrical Conductivity. Human Body Composition. Champaign, IL: Human Kinetics Publishers; 1996.
  90. Deurenberg P, van der Kooy K, Paling A, Withagen P. Assessment of body composition in 8-11 year old children by bioelectrical impedance. Eur J Clin Nutr. 1989;43(9):623-629. http://www.ncbi.nlm.nih.gov/pubmed/2606093
  91. Collins CT, Reid J, Makrides M, et al. Prediction of body water compartments in preterm infants by bioelectrical impedance spectroscopy. Eur J Clin Nutr. 2013;67:S47-S53. doi:10.1038/ejcn.2012.164
  92. Lukaski HC, Bolonchuk WW, Hall CB, Siders WA. Validation of tetrapolar bioelectrical impedance method to assess human body composition. J Appl Physiol. 1986;60(4):1327-1332. doi:10.1152/jappl.1986.60.4.1327
  93. Lukaski HC, Johnson PE, Bolonchuk WW, Lykken GI. Assessment of fat-free mass using bioelectrical impedance measurements of the human body. Am J Clin Nutr. 1985;41(4):810-817. doi:10.1093/ajcn/41.4.810
  94. Chumlea WC, Guo SS, Kuczmarski RJ, et al. Body composition estimates from NHANES III bioelectrical impedance data. Int J Obes. 2002;26(12):1596-1609. doi:10.1038/sj.ijo.0802167
  95. Demerath EW, Fields DA. Body composition assessment in the infant. Am J Hum Biol. 2014;26(3):291-304. doi:10.1002/ajhb.22500
  96. Higgins PB, Fields DA, Hunter GR, Gower BA. Effect of scalp and facial hair on air displacement plethysmography estimates of percentage of body fat. Obes Res. 2001;9(5):326-330. doi:10.1038/oby.2001.41
  97. Dempster P, Aitkens S. A new air displacement method for the determination of human body composition. Med Sci Sports Exerc. 1995;27(12):1692-1697. doi:10.1249/00005768-199512000-00017
  98. Fields DA, Goran MI, McCrory MA. Body-composition assessment via air-displacement plethysmography in adults and children: A review. Am J Clin Nutr. 2002;75(3):453-467. doi:10.1093/ajcn/75.3.453
  99. Urlando A, Dempster P, Aitkens S. A new air displacement plethysmograph for the measurement of body composition in infants. Pediatr Res. 2003;53(3):486-492. doi:10.1203/01.PDR.0000049669.74793.E3
  100. Demerath E, Guo S, Chumlea W, Towne B, Roche A, Siervogel R. Comparison of percent body fat estimates using air displacement plethysmography and hydrodensitometry in adults and children. Int J Obes Relat Metab Disord. 2002;26(3):389-397. doi:10.1038sjijo0801898
  101. Ginde SR, Geliebter A, Rubiano F, et al. Air displacement plethysmography: validation in overweight and obese subjects. Obes Res. 2005;13(7):1232-1237. doi:10.1038/oby.2005.146
  102. Nuñez C, Kovera AJ, Pietrobelli A, et al. Body composition in children and adults by air displacement plethysmography. Eur J Clin Nutr. 1999;53(5):382-387. doi:10.1038/sj.ejcn.1600735
  103. Levenhagen DK, Borel MJ, Welch DC, et al. A comparison of air displacement plethysmography with three other techniques to determine body fat in healthy adults. J Parenter Enter Nutr. 1999;23(5):293-299. doi:10.1177/0148607199023005293
  104. Mazahery H, von Hurst PR, McKinlay CJD, Cormack BE, Conlon CA. Air displacement plethysmography (pea pod) in full-term and pre-term infants: a comprehensive review of accuracy, reproducibility, and practical challenges. Matern Heal Neonatol Perinatol. 2018;4:12. doi:10.1186/s40748-018-0079-z
  105. Rosendale RP, Bartok CJ. Air-displacement plethysmography for the measurement of body composition in children aged 6-48 months. Pediatr Res. 2012;71(3):299-304. doi:10.1038/pr.2011.42
  106. Fields DA, Allison DB. Air-displacement plethysmography pediatric option in 2–6 years old using the four-compartment model as a criterion method. Obesity (Silver Spring). 2012;20(8):1732-1737. doi:10.1038/oby.2012.28
  107. Yao M, Nommsen-Rivers L, Dewey K, Urlando A. Preliminary evaluation of a new pediatric air displacement plethysmograph for body composition assessment in infants. Acta Diabetol. 2003;40 Suppl 1:S55-8. doi:10.1007/s00592-003-0027-9
  108. Pietrobelli A, Formica C, Wang Z, Heymsfield SB. Dual-energy X-ray absorptiometry body composition model: Review of physical concepts. Am J Physiol – Endocrinol Metab. 1996;271(6 (Pt 1)):E941-51. doi:10.1152/ajpendo.1996.271.6.e941
  109. Jebb SA, Goldberg GR, Jennings G, Elia M. Dual-energy X-ray absorptiometry measurements of body composition: effects of depth and tissue thickness, including comparisons with direct analysis. Clin Sci (Lond). 1995;88(3):319-324. doi:10.1042/cs0880319
  110. Marcus M, Wang J, Thornton J, Ma R, Burastero S, Pierson RJ. Anthropometrics do not influence dual X-ray absorptiometry (DXA) measurement of fat in normal to obese adults: A comparison with in vivo neutron activation analysis (IVNA). Obes Res. 1997;5(2):122-130. doi:10.1002/j.1550-8528.1997.tb00652.x
  111. Fan B, Shepherd JA, Levine MA, et al. National Health and Nutrition Examination Survey whole-body dual-energy X-ray absorptiometry reference data for GE Lunar systems. J Clin Densitom. 2014;17(3):344-377. doi:10.1016/j.jocd.2013.08.019
  112. Shepherd JA, Ng BK, Sommer MJ, Heymsfield SB. Body composition by DXA. Bone. 2017;104:101-105. doi:10.1016/j.bone.2017.06.010
  113. Institute of Medicine. Evaluating Obesity Prevention Efforts: A Plan for Measuring Progress. National Academies Press; 2013. http://www.ncbi.nlm.nih.gov/pubmed/24872979. Accessed January 2, 2020.
  114. Centers for Disease Control and Prevention. A SAS Program for the 2000 CDC Growth Charts (ages 0 to <20 years). https://www.cdc.gov/nccdphp/dnpao/growthcharts/resources/sas.htm. Published 2019. Accessed January 2, 2020.
  115. Hoelscher DM, Ranjit N, Pérez A. Surveillance systems to track and evaluate obesity prevention efforts. Annu Rev Public Health. 2017;38(1):187-214. doi:10.1146/annurev-publhealth-031816-044537
  116. Daymont C, Ross ME, Russell Localio A, Fiks AG, Wasserman RC, Grundmeier RW. Automated identification of implausible values in growth data from pediatric electronic health records. J Am Med Informatics Assoc. 2017;24(6):1080-1087. doi:10.1093/jamia/ocx037